RESEARCH ARTICLE

Independent Mutational Events Are Rare in the ATM Gene: Haplotype Prescreening Enhances Mutation Detection Rate

Midori Mitui,¹ Catarina Campbell,¹ Gabriela Coutinho,^{1,2} Xia Sun,¹ Chih-Hung Lai,¹ Yvonne Thorstenson,³ Sergi Castellvi-Bel,¹ Luis Fernandez,¹ Eugenia Monros,⁴ Beatriz Tavares Costa Carvalho,⁵ Oscar Porras,⁶ Gumersindo Fontan,⁷ and Richard A. Gatti^{1*}

¹Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine, Los Angeles, California; ²Instituto de Biofisica Carlos Chagas Filho, UFRJ, RJ, Brazil; ³Stanford Genome Technology Center, Stanford University Medical School, Palo Alto, California; ⁴Hospital Sant Joan de Deu, Barcelona, Spain; ⁵Department of Pediatrics, UNIFESP-Escola Paulista de Medicina, SP, Brazil; ⁶Immunology Service, National Children Hospital Dr Carlos Saenz Herrera, San Jose, Costa Rica; ⁷Immunology Unit Hospital La Paz, Madrid, Spain

Communicated by Jacques S. Beckmann

Mutations in the ATM gene are responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T). Many different mutations have been identified using various techniques, with detection efficiencies ranging from 57 to 85%. In this study, we employed short tandem repeat (STR) haplotypes to enhance mutation identification in 55 unrelated A-T families of Iberian origin (20 Spanish, 17 Brazilian, and 18 Hispanic-American); we were able to identify 95% of the expected mutations. Allelic sizes were standardized based on a reference sample (CEPH 1347-2). Subsequent mutation screening was performed by PTT, SSCP, and DHPLC, and abnormal regions were sequenced. Many STR haplotypes were found within each population and six haplotypes were observed across several of these populations. Single nucleotide polymorphism (SNP) haplotypes further suggested that most of these common mutations are ancestrally related, and not hot spots. However, two mutations (8977C>T and 8264_8268delATAAG) may indeed be recurring mutational events. Common haplotypes were present in 13 of 20 Spanish A-T families (65%), in 11 of 17 Brazilian A-T families (65%), and, in contrast, in only eight of 18 Hispanic-American families (44%). Three mutations were identified that would be missed by conventional screening strategies. In all, 62 different mutations (28 not previously reported) were identified and their associated haplotypes defined, thereby establishing a new database for Iberian A-T families, and extending the spectrum of worldwide ATM mutations. Hum Mutat 22:43-50, 2003. © 2003 Wiley-Liss, Inc.

KEY WORDS: ataxia-telangiectasia; ATM; Iberian; haplotype; masked mutations; haplotype prescreening; hot spots; mutation analysis

DATABASES:

ATM – OMIM: 208900; GenBank: U82828; www.benaroyaresearch.org/bri_investigators/atm.htm (ATM mutation database)

INTRODUCTION

Ataxia-telangiectasia (A-T; MIM# 208900) is characterized by progressive cerebellar ataxia, ocular apraxia, conjunctival telangiectasias, immunodeficiency, recurring sinopulmonary infections, chromosomal instability, cancer predisposition, and radiation hypersensitivity [Gatti et al., 2001]. A-T is transmitted as an autosomal recessive, affecting 1 in 40,000–100,000 children. Heterozygotes are at an increased risk for malignancy, particularly breast cancer [Swift et al., 1991; Easton, 1994; Athma et al., 1996; Dork et al., 2001; Chenevix-Trench et al., 2002; Spring et al., 2002; Concannon, 2002; Sommer et al., 2002]. The frequency of A-T heterozygotes is estimated at 1% of the population [Swift et al., 1991; Taylor et al., 1994], although recent reports of additional missense type ATM mutations in cancer patients suggest that this figure may be significantly higher [Gatti et al., 1999; Concannon, 2002].

Identifying mutations in the ATM gene has been difficult due to its large size [Concannon and Gatti, 1997]. The gene extends over 150 kb of genomic DNA,

Received 3 December 2002; accepted revised manuscript 4 March 2003.

*Correspondence to: Richard A. Gatti, MD, The David Geffen School of Medicine, Department of Pathology, 675 Young Drive South, Los Angeles, CA 90095-1732. E-mail: rgatti@mednet.ucla.edu

Grant sponsor: Ataxia-Telangiectasia Medical Research Foundation; Grant sponsor: NIH; Grant number: NS36323.

DOI 10.1002/humu.10232

Published online in Wiley InterScience (www.interscience.wiley.com).

includes 66 exons, and has an open reading frame of 9168 nt. The *ATM* gene product contains 3,056 amino acids and is a member of the phosphatidylinositol (PI) 3-kinase family of proteins, with the kinase domain in its C-terminal region [Savitsky et al., 1995]. The *ATM* gene plays a key role in several pathways involved in cell-cycle control, oxidative stress, and DNA repair [Gatti et al., 2001; Shiloh and Kastan, 2001].

Mutations in A-T patients are present throughout the ATM gene and lead mainly to null mutations with loss of ATM protein. Founder effect haplotypes and ATM mutations have been described for some populations [Gilad et al., 1996; Stankovic et al., 1998; Telatar et al., 1998a; Telatar et al., 1998b; Laake et al., 1998]. In this study, 55 A-T patients of Iberian origin were characterized from Spain, Brazil, and a Hispanic-American population.

Haplotypes were first defined using four short tandem repeat (STR) markers (D11S1819, NS22, D11S2179, and D11S1818) spanning a region of ~ 1.4 cM. Markers NS22 and D11S2179 are located within the ATM gene. A total of 105 of the 110 expected mutations (95%) were identified within these three populations, including 62 different mutations. This strategy allowed us to extend the mutation spectrum and to demonstrate the efficiency of haplotype prescreening in identifying mutations. Haplotype prescreening also identified some masked mutations that would not have been detected by any conventional screening method.

MATERIALS AND METHODS

The reference sequence for ATM used was GenBank U82828. Primers and PCR conditions may be obtained from the authors on request.

Patients

Fifty-five unrelated A-T patients of Iberian origin were studied, consisting of 20 individuals from Spain, 17 from Brazil, and 18 from a Hispanic-American population, primarily from Mexico. All patients had classical A-T phenotypes and laboratory confirmation of the diagnosis. Blood samples were collected according to approved human subject protection protocols.

Haplotype Analysis

STR genotyping of patients and their families was performed using four microsatellite markers from chromosome 11q22-23: D11S1819, NS22, D11S2179, and D11S1818 [Rotman et al., 1994; Uhrhammer et al., 1995; Vanagaite et al., 1995; Udar et al., 1999]. In each case, forward primer was end-labeled with γ^{33} P-ATP. PCR products were run on 6% denaturing polyacrylamide gel, which was then dried and exposed to x-ray film. Allelic sizes were standardized to a reference sample (CEPH 1347-02), for which the absolute sizes had been pre-determined by direct sequencing: S1819 (137/137), NS22 (163/165), S2179 (139/147), and S1818 (160/162). SNP genotyping was performed by single strand conformation polymorphism (SSCP) at three polymorphic sites (IVS17-56G>A, 5557G>A, and IVS62-55T>C) that together define the major SNP haplotypes in the ATM region: H2 (GGT), H3 (GAT), and H4 (AGC) [Thorstenson et al., 2001; Campbell et al., 2003].

Mutation Screening

When RNA was available, samples were screened for mutations by protein truncation testing (PTT) [Telatar et al., 1996], followed by SSCP [Castellvi-Bel et al., 1999] on genomic DNA. Samples in which mutations were not detected after screening by the above methods were subjected to denaturing high performance liquid chromatography (DHPLC) analysis [Thorstenson et al., 2001]; PCR fragments included ~90 nucleotides of adjacent intronic sequences. Messenger RNA was isolated from EBV-transformed lymphoblastoid cell lines (LCLs) using RNeasy kit (Qiagen, Valencia, CA). PCR products were purified by QIAquick PCR purification kit (Qiagen) and sequenced using the Thermo Sequenase[™] Radiolabeled Terminator Cycle Sequencing Kit (USB, Cleveland, Ohio) or automated sequencing. Nucleotide numbering is based on +1 being the first translational start codon.

RESULTS

Mutations were detected for 105 of 110 alleles (95%). The five mutations that were missed by PTT and SSCP were still missed by DHPLC. Sixty-nine different haplotypes were identified in the 55 families studied. Phase was determined by haplotyping the parents of the patient or by comparing the haplotypes of patients with a shared mutation. In four cases the phase could not be defined by either method. Haplotypes IBERIAN [1]–[6] recurred across the three different populations and were also compared to the haplotypes of 41 Costa Rican families.

Spanish A-T (SPAT) Families (N=20)

Twenty-six different haplotypes were identified in 40 affected chromosomes (Fig. 1A). Of seven recurring haplotypes (color shaded), three were specific for Spain (SPAT [A], [H], and [K]), and four were also observed in other Iberian populations (IBERIAN [2], [3], [5], and [6]). Sixty-five percent of Spanish families carried at least one of these recurring haplotypes. In general, specific mutations were found on specific haplotypes. Mutations were identified for 38 of the 40 alleles (95%). Of 22 different mutations (Fig. 1B) there were 14 truncations, five aberrant splicings, one missense, one replacement of the stop codon with a phenylalanine plus three additional amino acids, and one genomic deletion of 3450 nt (described below).

Brazilian A-T (BRAT) Families (N=17)

Twenty-one different haplotypes were identified in 34 affected chromosomes (Fig. 2A). Of five recurring haplotypes, one was specific for Brazil (BRAT [I]) and four were also observed in other Iberian populations (IBERIAN [1], [2], [3], and [5]). Sixty-five percent of Brazilian A-T families carried at least one recurring haplotype. Mutations were identified for 32 of 34 alleles (94%). Of 19 different mutations there were 14 truncations, three aberrant splicings, one genomic deletion of 3450 nt, and one genomic deletion of ~ 17 kb.

A heterozygous patient, AT162LA, carried two mutations located in the same region of the gene. Both were missed by DHPLC. One allele consisted of a genomic deletion of 3450 nt, that excluded exons 29, 30,

ATM MUTATIONS IN IBERIAN A-T PATIENTS 45

SDVI

						Ex/Int	Patient	Haplo	Mutation	Consequence
						8	SPAT 10.3 ^a	i	640delT	Termination
	SPAT 3.2	SPAT 4.3	SPAT 5.3	SPAT 6.1	SPAT 7.3	9	SPAT 7.3 ^h	D	715delT	Termination
S1819	133 133	131 141	133 131	133 133	131 131	16	SPAT 13 ^a	М	2250G>A	Aberrant splicing
NS22	161 161	165 163	171 159	161 161	163 163	18	SPAT 10.3 ^b	н	2413C>T	Termination
S2179	141 141	139 139	143 143	141 141	139 139	18	SPAT 23 ^a	н	2413C>T	Termination
S1818	154 154	160 156	144 160	154 154	158 158	IVS21	SPAT 8.3 ^a	E*	IVS21+1G>A	Aberrant splicing
	[A] [A]	[6] [B]	[C] [2]	[A] [A]	[D] [D]	IVS21	SPAT 9.4 ^a	G*	IVS21+1G>A	Aberrant splicing
						27	SPAT 5.3 ^a	С	3712_3716delTTATT	Termination
	SPAT 8.3	SPAT 9.4	SPAT 10.3	SPAT 11.4	SPAT 12	28	SPAT 23 ^b	R	3836G>A	Termination
S1819	137 141	137 141	133 139	131 131	131 131	28	SPAT 22.3 ^h	Q	3894_3895insT	Termination
NS22	163 151	163 163	165 173	169 161	161 161	IVS28	SPAT 5.3 ^b	2	IVS28+1711del3450	Exons 29~31 deleted
S2179	139 139	137 141	137 143	143 147	147 147	IVS33	SPAT 20.3 ^a	Р	IVS33+2T>C	Aberrant splicing
S1818	152 152	158 160	160 152	164 158	158 158	37	SPAT 19.3 ^a	0	5188C>T	Termination
	[5] [E]	[F] [G]	[H] [I]	[J] [K]	[K] [K]	39	SPAT 19.3 ^b	3	5644C>T	Termination
						45	SPAT 14	Т	6342_6343 insC +	Aberrant splicing
04040	SPAT 13	SPAT 14	SPAT 16	<spat 18=""></spat>	SPAT 19.3				6347_6348delGG	
51819	133 135	137 131	147 147	107 100	130 141	57	SPAT 13 ^b	L	8100A>T	<u>Lys</u> >Asn (<u>K</u> 2700N)
N322 60170	142 141	142 120	127 127	141 141	142 141	57	SPAT 9.4 ^b	F	8103_8104delAA	Termination
S1818	160 160	160 154	154 154	162 160	160 158	58	SPAT 4.3 ^a	В	8177C>T	Termination
01010	[L] [M]			102 100	[3] [0]	58	SPAT 8.3 ^b	5	8264_8268delATAAG	Aberrant splicing
	1-1 1.11	[-] [.]	1.11 L.1		[-] [-]	59	SPAT 16 ^h	N	8283_8284delTC	Termination
	SPAT 20.3	SPAT 22.3	SPAT 23	SPAT 24.3	SPAT 27.3	64	SPAT 18		8875_8878delGACT	Termination
S1819	131 127	135 135	133 139	133 133	131 131	64	SPAT 4.3 ^b	6*	8977C>T	Termination
NS22	165 163	175 175	165 173	161 161	165 165	64	SPAT 20.3 ^b	6	8977C>T	Termination
S2179	139 139	143 143	137 141	141 141	139 139	64	SPAT 27.3 ^h	6	8977C>T	Termination
S1818	160 154	164 164	160 158	154 154	160 160	64	SPAT 11.4 ^a	K*	8977C>T	Termination
	[6] [P]	[Q] [Q]	[H] [R]	[A] [A]	[6] [6]	64	SPAT 12 ^h	K	8977C>T	Termination
						65	SPAT 3.2 ^h	А	9010_9037del28	Termination
						65	SPAT 6.1 ^h	А	9010_9037del28	Termination
						65	SPAT 24.3 ^h	А	9010_9037del28	Termination
						65	SPAT 11.4 ^b	J	9170_9171delGA	Stop codon>Phe+3aa
(A)						(B)				
` /						· /				

FIGURE 1. Haplotypes and mutations of 20 Spanish families. A: Recurring haplotypes are color shaded, and were assigned numbers instead of letters whenever they were also observed in non-Spanish families. The <> indicate that phase has not been defined. B: Spanish mutations corresponding to affected haplotypes (A). Bolded mutations have not been reported previously. Underlined amino acids are conserved. Asterisks indicate where the same mutation occurred on different haplotypes. Superscripts: a, first allele; b, second allele; h, homozygote. Nucleotide numbering is based on +1 being the A of the first translational start codon.

	DDAT 4	DDATA		DDAT 0		Ex/Int	Patient	BRAT Haplo	Mutation	Consequence
	BRAI 1	BRAT 3	BRAI 4	BRAT 8	BRAT 10	11	BRAT14 ^a	J	1110C>G	Termination
S1819	135 139	133 133	139 139	137 131	131 131	12	BRAT4 ^a	E	1563 1564delAG	Termination
NS22	163 163	155 155	163 165	159 159	159 159	26	AT121LA ^a	L	3485T>G	Termination
S2179	139 143	147 147	139 147	139 141	143 143	28	BRAT8 ^a	1	3802delG	Termination
S1818	162 152	146 146	154 160	162 160	160 160	28	BRAT12 ^a	1	3802delG	Termination
	[5] [B]		[D] [E]	[1] [⊢]	[2] [2]	28	BRAT15.3 ^a	1	3802delG	Termination
						IVS28	BRAT4 ^b	D	IVS28+1G>A	Aberrant splicing
	BRAT 11.3	BRAT 12	BRAT 13	BRAT 14	AT121LA	IVS28	BRAT10 ^h	2	IVS28+1711del3450	Exons 29 ~ 31 deleted
S1819	131 139	137 135	135 131	135 141	137 131	IVS28	BRAT13 ^a	2	IVS28+1711del3450	Exons 29 ~ 31 deleted
NS22	163 163	159 159	163 159	161 161	163 159	IVS28	AT162LA ^a	2	IVS28+1711del3450	Exons 29 ~ 31 deleted
S2179	141 143	139 145	139 143	145 139	139 141	IVS28	BRAT16.3 ^h	2	IVS28+1711del3450	Exons 29 ~ 31 deleted
S1818	160 160	162 150	162 160	154 160	160 154	IVS28	BRAT24 ^h	2	IVS28+1711del3450	Exons 29 ~ 31 deleted
	[G] [H]	[1] [I]	[5] [2]	[J] [K]	[5] [L]	29	AT162LA ^b	М	4002_4005delCTTA	Termination
						31	BRAT19.3 ^a	0	4303A>T	Termination
	AT162LA	BRAT 15.3	BRAT 16.3	BRAT 17.3	BRAT 19.3	33	BRAT20.3 ^a	R	4732C>T	Termination
S1819	135 131	137 135	131 131	131 135	131 135	39	BRAT17.3 ^a	3	5644C>T	Termination
NS22	161 159	159 159	159 159	165 173	173 163	53	BRAT11	н	7517_7520delGAGA	Termination
S2179	145 143	139 145	143 143	141 143	141 141	IVS54	BRAT14 ^b	K	IVS54-3T>G	Aberrant splicing
S1818	160 160	160 156	158 160	166 154	160 158	55	BRAT20.3 ^b	Q	7792C>T	Termination
	[M] [2]	[1] [I]	[2] [2]	[N] [3]	[O] [P]	55	BRAT8 ^D	F	_7884_7888del5	Termination
						55	BRAT12 ^b	1 I	7913G>A	Termination
	BRAT 20.3	BRAT 24				55	BRAT15.3 ^b		7913G>A	Termination
S1819	131 133	131 131				58	BRAT1	5	8264_8268delATAAG	Aberrant splicing
NS22	173 171	159 159				58	BRAT13 ^D	5	8264_8268delATAAG	Aberrant splicing
S2179	141 143	143 143				58	AT121LA ^D	5	8264_8268delATAAG	Aberrant splicing
S1818	158 156	160 160				59	BRAT17.3	N	8395_8404del10	Termination
	[Q] [R]	[2] [2]				61	BRAT19.3 ^b	Z	8620C>T	Termination
						IVS63	BRAT3 ⁿ	С	IVS63del17kb	Exons 64 ~ 65 deleted
(A)						(B)				

FIGURE 2. Haplotypes and mutations of 17 Brazilian families. **A:** Recurring haplotypes are color shaded, and were assigned numbers instead of letters whenever they were also observed in non-Brazilian families. **B:** Brazilian mutations corresponding to affected haplotypes (A). Bolded mutations have not been reported previously. Superscripts: a, first allele; b, second allele; h, homozygote. Nucleotide numbering is based on +1 being the A of the first translational start codon.

and the first 34 nt of exon 31 (Fig. 3A, 3B); the second allele was a truncating mutation in exon 29 (4002–4005delCTTA). The genomic deletion of 3450 nt in the first allele created a homozygous pattern for the second

allele when detected by SSCP and sequencing, because of the absence of PCR primer annealing sites flanking exons 29–31 on the deleted allele. The deletion was first appreciated in homozygous Brazilian patients (BRAT 10,

FIGURE 3. Mutation associated with Iberian Haplotype [2] detected on SPAT 5.3, BRAT 10, BRAT 13, AT162LA, BRAT 16, and BRAT 24. A: Absence of 3450 nt observed at the genomic level. The large genomic deletion of 3450 nt starts at IVS28+1711 (GenBank U82828: 73863) and excludes nucleotides 1–34 of exon 31 (77312). B: PCR of genomic DNA performed with primers located in the regions flanking the deletion. The wild-type fragment of ~8 kb and a smaller sized fragment of ~4.5 kb are present in heterozygous patients carrying the deletion. Homozygous patients show only the smaller sized fragment.

16.3, and 24) with the haplotype IBERIAN [2] (Fig. 2A).

Another mutation consisted of a \sim 17-kb genomic deletion that begins within the LINE-1 repeat in intron 63 and ends in a LINE-1 repeat beyond the 3'UTR of the gene. We reported a similar mutation in Costa Rican A-T families (CRAT [B]) [Telatar et al., 1998a].

Hispanic-American A-T (HAAT) Families (N=18)

Twenty-eight different haplotypes were identified in 36 affected chromosomes (Fig. 4A). Of seven recurring haplotypes, three were specific for the Hispanic-American group (HAAT [H], [J], and [M]), and four were also observed in other Iberian populations (IBERIAN [1], [3], [4], and [6]). In contrast to the Spanish and Brazilian families, recurring haplotypes were observed in only eight of 18 Hispanic-American families (44%). Haplotype [H], found in two HAAT patients (AT42LA and AT196LA), carried the 103 C>T truncating mutation that was identified previously as a founder effect among North African Jews [Gilad et al., 1996; Campbell et al., 2003]. Haplotype IBERIAN [4] carrying the null mutation 5908C>T, had been identified previously as the most common Costa Rican founder

haplotype, CRAT [A] [Telatar et al., 1998a]. In two Hispanic-American families (AT10LA and AT195LA), a deletion of four intronic nucleotides (IVS20-579del-AAGT) resulted in the inclusion of 65 nt of intronic sequence in the mRNA, identical to a pseudo-exon mutation described recently by Pagani et al. [2002], in a German patient.

Mutations were identified for 35 of 36 alleles (97%). Of 27 different mutations (Fig. 4B), there were 16 truncations, eight aberrant splicings, two missenses, and one inclusion of a pseudo-exon.

Costa Rican A-T (CRAT) Families

In previously published studies of 82 affected chromosomes, only 10 different haplotypes were defined [Uhrhammer et al., 1995; Telatar et al., 1998a], making this the most homogeneous of the Iberian A-T populations studied to date. Four founder haplotypes accounted for 88% of the affected chromosomes in that country. Table 1 shows the six most common founder haplotypes, newly defined by standardized allelic sizes, and their associated mutations. Because the CRAT [A] haplotype was also observed in a Hispanic-American family, it has been redesignated as IBERIAN haplotype [4], as discussed above. Mutations have been defined for 93% of the 82 chromosomes. Of six different mutations there were three truncations, two aberrant splicings, and one genomic deletion of ~ 17 kb [Telatar et al., 1998a].

Identical Mutations on Identical STR and SNP Haplotypes

Four STR haplotypes (IBERIAN [1]–[4]), and the corresponding ATM mutations, were observed repeatedly among A-T patients of Spanish, Brazilian, Hispanic-American, and Costa Rican backgrounds. SNP haplotyping provided only limited information [Bonnen et al., 2000; Thorstenson et al., 2001]. Patients with a shared mutation and STR haplotype, in general, also shared a common SNP haplotype (e.g., all four patients with the IBERIAN [4] STR haplotype and mutation 5908C>T, also shared the H4 SNP haplotype, Table 2A). Taken together, these data suggest a common ancient ancestry for each of the Iberian mutations.

Identical Mutations on Different STR Haplotypes

We observed four exceptions to the general rule of finding identical mutations on identical haplotypes: 1) IVS21+1G>A on haplotypes SPAT [E] and SPAT [G]; 2) 8264_8268delATAAG on haplotypes IBERIAN [5] and CRAT [E]; 3) 8977C>T on haplotypes IBERIAN [6] and SPAT [K]; and 4) IVS63del~17kb on haplotypes BRAT [C] and CRAT [B] (Table 2B). Two of these mutations were observed on different SNP haplotypes As well: 8264_8268delATAAG on SNP haplotypes H2 (four patients) and H4 (one patient), and 8977C>T on SNP haplotypes H2 (four patients) and H3 (two patients) (Table 2B). Since these mutations

						Ex/Int	Patient	Haplo	Mutation	Consequence
						5	AT42LA ^a	H	103C>T	Termination
	AT1051 A	AT1861 A	AT124LA	AT1071 A	ATORIA	5	AT196LA ^a	н	103C>T	Termination
\$1910	130 130	131 137	131 131	131 131	137 130	9	AT193LA ^a	0	790delT	Termination
NEDD	161 161	165 163	157 157	173 173	160 160	IVS9	AT155LA ^a		IVS9+1G>A	Aberrant splicing
0170	120 120	120 141	141 141	142 142	142 127	11	AT36LA ^a		1110delC	Termination
521/9	160 160	160 159	141 141	143 143	143 137	11	AT188LA ^a	L	1235G>C	Aberrant splicing
51010		[6] [C]			100 150	12	AT188LA ^b	М	1348delG	Termination
	['] [']			[4] [4]		12	AT195LA ^a	М	1348delG	Termination
		47401 4		474001 4	474001 4	15	AT194LA ^a		2066C>G	Termination
C1010	107 125	127 121	101 125	122 121	<aii89la></aii89la>	IVS20	AT195LA ^b	J	IVS20-579delAAGT	Pseudo-exon inclusion
51019	127 133	105 105	101 100	177 105	171 105	IVS20	AT10LA ^a	J	IVS20-579delAAGT	Pseudo-exon inclusion
N522	101 159	100 100	103 103	142 120	1/1 100	IVS20	AT189LA		IVS20-3del3ins7	Aberrant splicing
52179	139 143	6 <u>160</u> 158 [[H] [I]	141 135	143 139 160 150 [L] [M]	141 139 160 160	27	AT36LA ^b		3663G>A	Termination
S1818	[G] [3]		[J] [K]			27	AT185LA ⁿ	Т	3673C>T	Termination
						28	AT196LA ^b	1	3802delG	Termination
	474001 4					IVS31	AT124LA ⁿ	D	IVS31-1G>C	Aberrant splicing
04040	101 100	100 100	<ai 155la=""></ai>	101 105		34	AT191LA ⁿ	S	4777G>T	Aberrant splicing
51819	101 109	100 100	101 100	151 105	101 101	39	AT194LA ^D		5566G>T	Termination
N322	141 120	120 120	120 120	120 120	120 120	39	AT34LA ^a	3	5644C>T	Termination
521/9	141 139	160 160	160 150	159 159	160 160	41	AT187LA"	4	5908C>T	Termination
51010			100 150			42	AT10LA ^D	K	5932G>T	Termination
		[1] [1]		[Q] [N]	[3] [3]	IVS53	AT193LA	N	IVS53-2A>C	Aberrant splicing
	<ΔT194I Δ>	T194ΙΔ> ΔΤ195ΙΔ			54	AT155LA ^D		7704_7705delAG	Termination	
\$1910	<at 194la=""></at>	121 131	121 121 127 127			57	AT192LA ^a	R	8045C>G	<u>Thr</u> >Ser (<u>T</u> 2682S)
NS22	159 167	165 165	165 159			57	AT42LA ^D	1	8105T>G	<u>lle</u> >Arg (<u>I</u> 2702R)
\$2170	139 143	141 139	139 139			57	AT192LA	Q	8150A>C	Aberrant splicing
S1818	160 156	160 150	160 162			58	AT161LA"	Р	8185C>T	Termination
01010	100	[.]] [M]	[H] [1]			64	AT186LA ^a	С	8874_8877delTGAC	Termination
		[0] [[0]]	[][.]			64	AT186LA	6	8977C>T	Termination
						IVS64	AT34LA ^b	G	IVS64-1G>C	Aberrant splicing
(A)						(B)				
(11)						(12)				

FIGURE 4. Haplotypes and mutations of 18 Hispanic-American families. Note heterogeneity, as compared to Spanish and Brazilian families. A: Recurring haplotypes are color shaded, and were assigned numbers instead of letters whenever they were also observed in non-Hispanic-American families. The < > indicate that phase has not been defined. B: Mutations corresponding to affected haplotypes shown in (A). Bolded mutations have not been reported previously. Underlined amino acids are conserved. Superscripts: a, first allele; b, second allele; h, homozygote. Nucleotide numbering is based on +1 being the A of the first translational start codon.

TABLE 1. Standardized Costa Rican Haplotypes, with previous	ly
published mutations [Telatar et al., 1998a]	

Haplotype	Mutation	S1819	NS22	S2179	S1818
[4]	5908C>T	131	173	143	160
[B]	IVS63del17kb	131	171	141	160
[C]	7449G>A	137	163	139	160
[D]	4507C>T	139	161	141	160
[E]	8264.8268delATAAG	131	169	141	162

occurred on different STR and SNP haplotypes, they most likely represent independent mutational events or true hot spots (see the Discussion section).

Masked Mutations

Three masked mutations were identified that would be missed by conventional PCR-based screening methods: 1) IVS28+1711del3450 (SPAT 5.3, BRAT 10, 13, 16.3, 24, AT162LA); 2) IVS63del~17kb (BRAT 3); and 3) IVS20-579delAAGT (AT195LA, AT10LA). The IVS28+1711del3450 mutation, carried on haplotype IBERIAN [2], was missed when heterozygous genomic DNA was screened by SSCP and DHPLC; it was only identified in retrospect after it was detected in a homozygous Brazilian patient (BRAT 24), carrying the same haplotype (IBERIAN [2]), on whom no PCR product could be obtained for the deleted exons (for further details see Fig. 3). Similarly, IVS63del~17kb, found on Brazilian and Costa Rican patients, would be missed in heterozygous patients. IVS20-579delAAGT, in contrast, was missed on screening because PCR primers did not include the deep intronic region of the mutation. The inclusion of a pseudo-exon was detected in the cDNA.

DISCUSSION

Of the 62 different Iberian A-T mutations identified, 28 have not been reported previously. Five of 110 alleles could not be identified by PTT, SSCP, and DHPLC. Since these alleles correspond to heterozygous patients, they may consist of large genomic deletions that would not be detected by PCR-based strategies unless observed in homozygotes. The high frequency of recurring haplotypes in the Spanish and Brazilian families (65%), and in the previously published Costa Rican families (>95%), stands in sharp contrast to the eight of 18 Hispanic-American families with recurring haplotypes (44%). The marked diversity of affected A-T haplotypes in the Hispanic-American population was 78% (28 of 36 haplotypes); this diversity has been observed in other studies as well.

In a previous study, splicing mutations accounted for approximately half of the mutations in A-T patients [Teraoka et al., 1999], as compared to 26% in our data. They typically involve the highly conserved splice donor (5' or GT) or acceptor (3' or AG) sites. We detected one mutation in BRAT 14 (IVS54–3T>G) that affected the

Mutation	STR haplotype	Brazilian	Spanish	Hispanic-American	Costa Rican	SNP haplotype				
A. Identical mutations on <i>identical</i> STR and SNP haplotypes (number of families)										
3802delG	IBERIAN [1]	(3)		(1)		H2				
IVS28+1711del3450	IBERIAN [2]	(5)	(1)			H2				
5644C>T	IBERIAN [3]	(1)	(1)	(1)		H2				
5908C>T	IBERIAN [4]			(1)	(3)	H4				
B. Identical mutations on <i>different</i> STR and/or SNP haplotypes (number of families)										
IVS21+1G>A	SPAT [E]		(1)			H2				
	SPAT [G]		(1)			H2				
8264_8268delATAAG ^a	IBERIAN [5]	(3)	(1)			H2				
	CRAT [E]				(1)	H4				
$8977 C > T^{a}$	IBERIAN [6]		(3)	(1)		H2				
	SPAT [K]		(2)			H3				
IVS63del ~17kb	BRAT [C]	(1)				H4				
	CRAT [B]	-			(2)	H4				

TABLE 2. ATM Mutations on STR and SNP Haplotypes in Patients of Iberian Origin

^aMutation detected on different STR and SNP haplotypes.

less well conserved position –3 in the acceptor site of intron 54, causing the deletion of exon 55. Another splicing mutation, IVS20-579delAAGT, is identical to one described as a deletion of 4 nt (GTAA) in intron 20 by Pagani et al. [2002]. This mutation abolishes the interaction of the U1 snRNP with DNA causing the insertion of a pseudo-exon in the mRNA, and defining a new splicing motif: the "intron-splicing processing element (ISPE)."

Missense mutations in the *ATM* gene have been associated with an increased risk of breast and other cancers [Gatti et al., 1999; Spring et al., 2002; Concannon et al., 2002]. The three missense mutations we detected in the Iberian population (one in Spain and two in the Hispanic-American group) were found within the kinase domain and affected highly conserved amino acids (mouse and pufferfish). These are being tested for function in a mutagenesis assay [Scott et al., 2002].

In the Spanish cohort, one of the novel mutations that was identified (9170_9171delGA) alters the final stop codon of the gene and replaces it with phenylalanine plus three additional amino acids. The SPAT [A] haplotype in Spanish families was always found in a homozygous state, implying consanguinity in each of three families; this haplotype appears to be associated with Spanish gypsies. In the Brazilian population, we observed mutations of various European origins: Spanish (5644C>T, 8264_8268delATAAG), German (3802delG), and Italian (7517_7520delGAGA). These findings corroborate other reports on the ancestry of the Brazilian population [Alves-Silva et al., 2000; Carvalho-Silva et al., 2001]. The African contribution was also corroborated in the Brazilian A-T population by the presence of an African polymorphism in BRAT 3 (5793T>C), which was described previously by Thorstenson et al. [2001]. Within the Hispanic-American population, two unrelated patients carried the 103C>T founder mutation of North African Jews, and shared STR and SNP haplotypes. Haplovariants associated with this mutation in other Sephardic Jews were reported by Campbell et al. [2003].

In general, identical mutations were found on identical STR and SNP haplotypes; however, we found four exceptions to this rule: IVS21+1G>A, 8264_8268del-ATAAG, 8977C > T, and IVS63del ~ 17kb (Table 2B). Even the SNP haplotypes were different for 8264_8268delATAAG and 8977C>T, suggesting that these represent independent mutational events or true hot spots in the ATM gene. A mechanism for such genomic instability would not be difficult to envision for the IVS63del~17kb, which deletes genomic material between two very homologous LINE-1 repeats. The IVS21+1G>A mutation associated with different STR haplotypes probably reflects the instability of STR markers. In contrast, the mechanisms for why 8264_8268delATAAG and 8977T>C might be hot spots are unclear at this writing.

Through the very efficient use of global haplotype identification with absolute sizes for the STR markers, we have demonstrated that many haplotypes are repeatedly observed within the Iberian population, and that these can help to identify specific ATM mutations. By haplotype prescreening, we have achieved the highest mutation detection rates of any published work to date (\geq 94%). For this, it is important to emphasize that global STR haplotyping can only be accomplished if all alleles are standardized in advance of testing.

Standardized haplotyping has also allowed several masked mutations to be identified in patients once the mutation was linked to those haplotypes in homozygous patients. This ever-expanding group of masked ATM mutations may be of importance when searching for ATM mutations associated with various malignancies. In order to detect these mutations, specific PCR primers for each would have to be designed and included in such screening. This is especially important when screening DNA for large cancer cohorts for heterozygous mutations. Prescreening with standardized STR markers may also be useful for restudying A-T patients described in previous publications for whom mutations could not be identified.

ACKNOWLEDGMENTS

The authors thank Drs. Ellen Dantos, Teresa Español, Juan Llerena, Montserrat Mila, and Salmo Raskin for providing blood samples on some of the patients described.

REFERENCES

- Alves-Silva J, Santos M, Guimaraes PEM, Ferreira ACS, Bandelt H-J, Pena SDJ, Prado VF. 2000. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet 67:444–461.
- Athma P, Rappaport R, Swift M. 1996. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 92:130–134.
- Bonnen PE, Story MD, Ashorn CL, Buchholz TA, Weil MM, Nelson DL. 2000. Haplotypes at ATM identify coding-sequence variation and indicate a region of extensive linkage disequilibrium. Am J Hum Genet 67:1437–1451.
- Campbell C, Mitui M, Eng L, Coutinho G, Thorstenson Y, Gatti R. 2003. ATM mutations on distinct SNP/STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveals ancestral founder effects. Hum Mutat 21:123–131.
- Carvalho-Silva DR, Santos FR, Rocha J, Pena SDJ. 2001. The phylogeography of Brazilian Y-chromosome lineages. Am J Hum Genet 68:281–286.
- Castellvi-Bel S, Sheikhavandi S, Telatar M, Tai LQ, Hwang M, Wang Z, Yang Z, Cheng R, Gatti RA. 1999. New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel SSCP strategy. Hum Mutat 14:156–162.
- Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, Donn K, Cummings M, Nyholt D, Jenkins MA, Scott C, Pupo GM, Dork T, Bendix R, Kirk J, Tucker K, McCredie MR, Hopper JL, Sambrook J, Mann GJ, Khanna KK. 2002. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94:205–215.
- Concannon P, Gatti RA. 1997. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat 10:100–107.
- Concannon P. 2002. ATM heterozygosity and cancer risk. Nat Genet 32:89–90.
- Dork T, Bendix R, Bremer M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, Weise S, Stuhrmann M, Karstens JH. 2001. Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res 61:7608–7615.
- Easton DF. 1994. Cancer risk in A-T heterozygotes. Int J Radiat Biol 66:S177–S182.
- Gatti RA, Tward A, Concannon P. 1999. Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423.
- Gatti RA, Becker-Catania S, Chun H, Sun X, Mitui M, Lai C-H, Khanlou N, Babaei M, Cheng R, Clark C, Huo Y, Udar N, Iyer R. 2001. The pathogenesis of ataxia-telangiectasia. Clin Rev Allergy Immunol 20:87–108.
- Gilad S, Bar-Shira A, Harnik R, Shkedy D, Ziv Y, Khosravi R, Brown K, Vanagaite L, Xu G, Frydman M, Lavin MF, Hill D, Tagle DA, Shiloh Y. 1996. Ataxia-telangiectasia: founder effect among North African Jews. Hum Mol Genet 5: 2033–2037.
- Laake K, Telatar M, Geitvik GA, Hansen RO, Heiberg A, Andresen AM, Gatti RA, Borresen-Dale A-L. 1998. Identical

mutation in 55% of the ATM alleles in 11 Norwegian AT families: evidence for a founder effect. Eur J Hum Genet 6: 235–244.

- Pagani F, Buratti E, Stuani C, Bendix R, Dork T, Baralle FE. 2002. A new type of mutation causes a splicing defect in ATM. Nat Genet 30:426–429.
- Rotman G, Vanagaite L, Collins FS, Shiloh Y. 1994. Three dinucleotide repeat polymorphisms at the ataxia-telangiectasia locus. Hum Mol Genet 3:2079.
- Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G. 1995. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032.
- Scott SP, Bendix R, Chen P, Clark R, Dork T, Lavin MF. 2002. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc Natl Acad Sci 99:925–930.
- Shiloh Y, Kastan MB. 2001. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83: 209–254.
- Sommer SS, Buzin CH, Jung M, Zheng J, Liu Q, Jeong SJ, Moulds J, Nguyen VQ, Feng J, Bennett WP, Dritschilo A. 2002. Elevated frequency of ATM gene missense mutations in breast cancer relative to ethnically matched controls. Cancer Genet Cytogenet 134:25–32.
- Spring K, Ahangari F, Scott SP, Waring P, Purdie DM, Chen PC, Hourigan K, Ramsay J, McKinnon PJ, Swift M, Lavin MF. 2002. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat Genet 32:185–190.
- Stankovic T, Kidd AM, Sutcliffe A, McGuire GM, Robinson P, Weber P, Bedenham T, Bradwell AR, Easton DF, Lennox GG, Haites N, Byrd PJ, Taylor AM. 1998. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62:334–345.
- Swift A, Morrell D, Massey RB, Chase CL. 1991. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836.
- Taylor AMR, Byrd PJ, McConville CM, Thacker S. 1994. Genetic and cellular features of ataxia-telangiectasia. Int J Radiat Biol 65:65–70.
- Telatar M, Wang Z, Udar N, Liang T, Bernatowska-Matuszkiewicz E, Lavin M, Shiloh Y, Concannon P, Good RA, Gatti RA. 1996. Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am J Hum Genet 59:40–44.
- Telatar M, Wang Z, Castellvi-Bel S, Tai L-Q, Sheikhavandi S, Regueiro JG, Porras O, Gatti RA. 1998a. A model for ATM heterozygote identification in a large population: four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia. Mol Genet Metab 64:36–43.
- Telatar M, Teraoka S, Wang Z, Chun HH, Liang T, Castellvi-Bel S, Udar N, Borresen-Dale AL, Chessa L, Bernatowska-Matuszkiewicz E, Porras O, Watanabe M, Junker A, Concannon P, Gatti RA. 1998b. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet 62: 86–97.

- Teraoka S, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P. 1999. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631.
- Thorstenson YR, Shen P, Tusher VG, Wayne TL, Davis RW, Chu G, Oefner PJ. 2001. Global analysis of ATM polymorphism reveals significant functional constraint. Am J Hum Genet 69:396–412.
- Udar N, Farzad S, Tai LQ, Bay J-O, Gatti RA. 1999. A highly polymorphic complex microsatellite marker within the ATM gene. Am J Hum Genet 82:287–289.
- Uhrhammer N, Lange E, Porras O, Naeim A, Chen X, Sheikhavandi S, Chiplunkar S, Yang L, Dandekar S, Liang T, Patel N, Teraoka S, Udar N, Calvo N, Concannon P, Lange K, Gatti RA. 1995. Sublocalization of an ataxia-telangiectasia gene distal to D11S384 by ancestral haplotyping in Costa Rican families. Am J Hum Genet 57:103–111.
- Vanagaite L, James MR, Rotman G, Savitsky K, Bar-Shira A, Gilad S, Ziv Y, Uchenik V, Sartiel A, Collins FS, Sheffield VC, Richard III CW, Weissenbach J, Shiloh Y. 1995. A high-density microsatellite map of the ataxia-telangiectasia locus. Hum Genet 95:451–454.